IDENTITIES AND LINEAR DEPENDENCE

BY

S. A. AMITSUR

ABSTRACT

Central polynomial identities are used to construct alternating central identities by which new identities are obtained. These identities express the linear dependence of $n^2 + 1$ generic matrices, and so yield slight generalizations and simplified proofs of a result of Formanek, the theorem about Azumaya algebras of M. Artin and a recent result of Cauchon.

Among the many central identities of a matrix ring we introduce new identities $\delta[x_1, \dots, x_n, y_1, \dots, y_m]$ which are alternating, homogeneous and linear only in the x_i , which can be obtained from any regular central identity. These new types of identities yield a linear dependence $\Sigma(-1)^{i-1}$. $\delta[x_1,\dots,\hat{x}_i,\dots,x_n^2; y_1,\dots,y_m]x_i = 0$ which holds in every prime and semiprime ring of "identity degree n". This linear dependence yields rather easily a result of Formanek [5] on the embedding of a prime PI-ring into a free C-module. Moreover, the generalization of this result when combined with an idea of Rowen [8] on the behavior of regular central identities yields a direct relatively simple proof fo the famous M. Artin-Procesi theorem ([3],[6]) on Azumaya algebras. The present proof differs from all other known proofs $([1], [3], [6], [8])$ as it does not use any trace arguments and no reduction to prime rings or to homomorphic images of a generic matrix ring. In fact it enables us to prove that if R satisfies a certain identity $d_{n^2+1}[x; y] = 0$ and has a regular central identity which does not vanish on all simple images *R/M,* then R is an Azumaya algebra, which is far less than the assumption that all identities of $M_n(Z)$ hold in R. Finally, this identity is used to prove along parallel lines the result of Formanek that a semi-prime PI-ring R with a noetherian center is C-noetherian, and a recent result of Cauchon ([9]) that ACC on two-sided ideals implies that R is noetherian.

1. The polynomials $d_m[x; y]$

As a basic polynomial for generating identities of a matrix ring $M_n(K)$, we shall use the following polynomials:

(1)
$$
d_m[x_1, \dots, x_m; y_1, \dots, y_{m-1}] = \sum \mathrm{sg} \sigma x_{\sigma(1)} y_1 x_{\sigma(2)} \dots x_{\sigma(m-1)} y_{m-1} x_{\sigma(m-1)}
$$

where σ ranges over all permutations of $\{1, 2, \dots, m\}$. Our first result is:

THEOREM 1a. If K is a commutative ring with a unit, then $M_n(K)$ satisfies $d_m[x, y] = 0$ for all $m \ge n^2 + 1$, and for every $i \ne k$ there is a substitution for x's and y's so that d_n ^{[x; y] = c_{ik}, where c_{ik} are the matrix units.}

PROOF. The polynomials $d_m(x; y)$ satisfy a recursive relation like determinants, *that is:*

(2)
$$
d_{m+1}[x_1, \dots, x_{m+1}; y_1, \dots, y_m]
$$

$$
= \sum_{i=1}^{m+1} (-1)^{i-1} d_m[x_1, \dots, \hat{x}_i, \dots, x_{m+1}; y_1, \dots, y_{m-1}] y_m x_i.
$$

Thus if $d_m[x; y] = 0$ in $M_n(K)$ for $m = m_0$ then it will hold also for $m \ge m_0$.

Since $d_m[x; y]$ is multilinear and homogeneous it suffices to show that $d_m[x; y] = 0$ for substitutions of the *indeterminates* by elements taken from a linear base of $M_n(K)$, but as such we have only n^2 different elements and so if $m \ge n^2 + 1$, at least two will be equal and hence $d_m[x; y] = 0$, since $d_m[x; y] = 0$ if two of the x_i 's are equal.

To prove that $d_{n^2}[x; y] = c_{ik}$, we restrict ourselves to $(i, k) = (1, n)$ and to this end we substitute for the set $\{x_1,\dots, x_{n^2}\}$ the ordered set ${c_{11},c_{12},\dots,c_{1n};c_{21},\dots,c_{2n},\dots,c_{n1},\dots,c_{nn}}$ and for ${y_1,\dots,y_{n^2-1}}$ the set of ${c_{11}, c_{21}, \dots, c_{n-11}, c_{n2}, c_{12}, \dots, c_{1n}, \dots, c_{n-1n}}$. Namely, the y's are chosen so that the monomial $x_1y_1x_2y_2 \cdots y_{n^2-1}x_n^2$ will be equal to c_{1n} . In fact, this is the only monomial which will yield a nonzero element, since if $y_i x_{\lambda} y_{i+1} \neq 0$ then x_{λ} is uniquely determined, and therefore if $x_{\sigma(1)}y_1x_{\sigma(2)}\cdots x_{\sigma(n^2-1)}y_{n^2-1}x_{\sigma(n^2)}$ yields a nonzero element then $x_{\sigma(i)} = x_i$ for $i = 2, \dots, n^2 - 1$. Moreover, since $y_i = c_{11}$ we must have $x_{\sigma(1)} = c_{a1}$ and the only one of this form available is c_{11} which is equal to x_1 . Thus $\sigma(1) = 1$, and similarly $x_{\sigma(n)} = c_{nn} = x_n$. Thus $\sigma =$ identity and this completes the proof that $d_n^2(x; y) = c_{1n}$.

If R is a prime ring (an algebra over a commutative ring K) which satisfies a polynomial identity then its ring of quotients $Q(R)$ is a central simple algebra of dimension n^2 over its center, and we define pid $(R) = n$ (-polynomial identity

degree). If R is a semi-prime ring with a polynomial identity then we set $pid(R) = max$ $pid(R/P)$ where P ranges over all prime ideals P of R. Clearly, this generalizes the definition of pid for prime rings.

We can extend Theorem la to semi-prime rings.

THEOREM 1b: *If R is a semi-prime K-algebra and* $pid(R) = n$ then R *satisfies* $d_m[x; y] = 0$ *for* $m \ge n^2 + 1$; *and* $d_{n^2}[x; y] \ne 0$ *in R.*

PROOF: Consider first the case of a prime ring R ; then R and its ring of quotients $Q(R)$ satisfy the same identities. If the center C of $O(R)$ is finite then $R = Q(R) = M_n(C)$ and so Theorem la coincides with our case. If C is infinite, choose splitting field F of $Q(R)$. That is, $Q(R) \otimes F = M_n(F)$ and $M_n(F)$, $Q(R)$ have the same identities; hence the fact that $d_m[x; y] = 0$ in $M_n(F)$ for $m \ge n^2 + 1$ implies that it holds also in $Q(R)$ as well as in R. Also $d_{n^2}[x; y] \neq 0$ in $M_n(F)$ and since it is homogeneous and multilinear and $Q(R) = RC$, $Q(R) \otimes F = M_n(F)$, the polynomial $d_{n^2}[x; y]$ cannot vanish on R.

If R is semi-prime then R is a subdirect sum of the prime rings R/P which satisfy $d_m[x; y] = 0$ for $m \ge n^2 + 1$, so it holds also in R. At least one of R/P has $pid(R/P) = n$, and there $d_n:[x:y] \neq 0$; hence this polynomial does not vanish in R.

2. Alternating central identities

A polynomial $p[x_1,\dots,x_m,y_1,\dots,y_r]$ is said to be an alternating polynomial (in the x's) if $p[x; y]$ is a homogeneous polynomial multilinear only in x_1, \dots, x_m and vanishes if two of the x_i are made equal. The following follows readily:

LEMMA 2. A polynomial $p[x_1, \dots, x_m, y_1, \dots, y_t]$ is alternating in the x's if *and only if it has the form :*

(3)
$$
p[x; y] = \sum_{r=1}^{n} p_{r_0} d_m[x_1, \cdots, x_m; p_{r_1}, \cdots, p_{r_{m-1}}] p_{r_m}
$$

where the p_{τ_i} *are polynomials in the y's only.*

Indeed, write $p[x, y] = \sum_{\rho, \sigma} a_{\rho\sigma} l_{\rho\sigma} x_{\sigma(1)} l_{\rho_1} x_{\sigma(2)} \cdots l_{\rho_m} x_{\sigma(m)} l_{\rho_m}$ where l_{ρ_i} are monomials in the y's and the α_{∞} are scalar (of K). Since it is multilinear in the x's and alternating, it follows readily that the interchanging of two x_i will yield a change of sign of $p[x; y]$, and this readily implies that $\alpha_{\rho\sigma} = \alpha_{\rho}$, sg σ where sg σ is the sign of the respective permutation. Summing up $\Sigma_{\rho\sigma} = \Sigma_{\rho} \Sigma_{\sigma}$ clearly yields (3). The converse is evident.

A polynomial $\delta[x; y]$ will be called an *alternating central identity* of a ring R, if $\delta[x; y]$ is alternating in the x's and it is a central identity for R, that is, $\delta[x; y]$ is the center of R for all values of x and y but it is not identically zero.

THEOREM 3. Let R be a semi-prime ring with $pid(R) = n$, then R has an *alternating central identity* $\delta[x_1, \dots, x_nx; y_1, \dots, y_m]$, which holds also for all $M_n(K)$, K an arbitrary commutative ring; and for each alternating identity the *relation*

(4)
$$
\sum_{i=1}^{n^{2}+1} (-1)^{i-1} \delta[x_{1}, \cdots, \hat{x}_{i}, \cdots, x_{n^{2}+1}; y_{1}, \cdots, y_{m}]x_{i} = 0
$$

holds in R. $(\hat{x}_i$ *denotes the omitting of the x_i from the variables of* $\delta(x; y)$ *.*

PROOF. Let $q[u_0, u_1, \dots, u_n]$ be any central identity for $M_n(K)$ which holds for every commutative ring K (with a unit) and which is homogeneous and linear in at least one of the indeterminates, say *uo.* (These were called *regular* central identities in [8].) Such a central identity exists, e.g. the Formanek or Razmyslov polynomials ([4],[7]). Consider the polynomial:

$$
\delta[x; y] = q[d_n x[x_1, \cdots, x_n x; y_1, \cdots, y_n x_{-1}]] y_n x; y_n x_{+1}, \cdots, y_m]
$$

where $m = n^2 + t$. $\delta[x; y]$ is obtained from $q[u]$ by the replacements $u_0 =$ $d_{n^2}[x_1, \dots, x_{n^2}; y_1, \dots, y_{n^2-1}]$ y_{n^2} and $u_j = y_{n^2+j}$ for $j \ge 1$. Since $q[u]$ is homogeneous and linear in u_0 , δ [x; y] will be alternating in the x's. To prove that it is a central identity we consider first the case where R is a prime ring. Again if the center of the ring of quotients $Q(R)$ is finite then $R = Q(R) = M_n(C)$; since $q[a_0, a_1, \dots, a_k] \neq 0$ for some $a_i \in R$ and is linear in u_0 , then $q[c_{ik}, a_1, \dots, a_k] \neq 0$ for some matrix unit c_{ik} . It follows, by Theorem 1a, that d_{n} ²[x; y] = c_{ij} for $j \neq i$ for some substitution in $M_n(C)$, and thus if we set $y_n^2 = c_{ik}$ and $y_n^2 + \lambda = a_{ik}$ we get $\delta[x; y] = q[c_{ik}, a_{1}, \dots, a_{n}] \neq 0$. The same proof shows that $\delta[x; y]$ does not vanish in any matrix ring $M_n(K)$ over any commutative ring K. Hence, if the center of $Q(R)$ is an infinite field, R and $Q(R) = RC$ and $Q(R) \otimes F \cong M_n(F)$ will have the same identities and in particular $\delta[x; y]$ which does not vanish in $M_n(F)$ will not vanish in R. On the other hand it gets only central values in $M_n(F)$ and hence it is a central alternating identity for R.

Next, if R is semi-prime, then R is a subdirect sum of the prime rings *R/P* and, at least for one *P*, $pid(R/P) = n$. Now, $\delta[x; y]$ is a central identity for R/P of pid = n, and if $pid(R/P) < n$ then $\delta[x; y] = 0$ in R/P since central identities of $M_n(K)$ are identities for $M_m(K)$ for $m < n$. Thus $\delta[x, y]$ is a central identity for R since it does not vanish for at least one *R/P,* and this completes the proof of the first part of our theorem.

Vol. 22, 1975 IDENTITIES 131

Let $p[x_1, \dots, x_m; y_1, \dots, y_t]$ be any alternating polynomial (not necessarily central); then it follows by (3) and (2) that:

$$
\sum_{i=1}^{m+1}(-1)^{i-1}p[x_1,\dots,\hat{x}_i,\dots,x_{m+1};y_1,\dots,y_t]x_i
$$

=
$$
\sum_{i=1}^{m+1}\sum_{\tau}(-1)^{i-1}p_{\tau_0}d_m[x_1,\dots,\hat{x}_i,\dots,x_{m+1};p_{\tau_1},\dots,p_{\tau_{m-1}}]p_{\tau_m}x_i
$$

=
$$
\sum_{\tau}p_{\tau_0}d_{m+1}[x_1,x_2,\dots,x_{m+1};p_{\tau_1},\dots,p_{\tau_{m-1}},p_{\tau_m}].
$$

In particular this implies a more general result than (4):

COROLLARY 4. *If R is any ring satisfying the identity* $d_{n^2+1}[x; y] = 0$ *(e.g. R is* a semi-prime ring with $pid(R) = n$, and $p[x_1, \dots, x_{n^2}; y_1, \dots, y_t]$ is any alternat*ing polynomial in n² indeterminates* x_1, \dots, x_n *then R satisfies the identity*:

(5)
$$
\sum_{i=1}^{n^2+1} (-1)^{i-1} p[x_1, \dots, \hat{x_i}, \dots, x_{n^2+1}; y_1, \dots, y_t] x_i = 0.
$$

Indeed, R satisfies the identity $d_{n^2+1}[x; y] = 0$ by Theorem 1b, and thus (5) follows by the relation proved above for $m = n^2$.

Finally (5) is the required relation (4) of our theorem.

REMARK. Note that (4) yields the linear dependence of n^2+1 generic matrices in the ring generated by these matrices.

The proof of Theorem 3 actually proves the more general case:

COROLLARY 5. *If R is a K-algebra which satisfies* $d_{n^2+1}[x; y] = 0$ and R has a *regular central identity q[u] which does not vanish on all matrix rings* $M_n(\bar{K})$, \bar{K} homomorphic image of K, and if either pid(R) = n or $q[u]$ attains non nil *elements, then R has an alternating central identity* $\delta[x_1, \dots, x_n]$; y_1, \dots, y_m *with the same property and* (4) *holds in R.*

In the proof of Theorem 3, the existence of a regular central identity $q[u]$ was known for prime rings and hence for semi-prime rings with $pid(R) = n$. In the present case, we again choose $\delta[x; y] = q(d_n,[x; y]y_n, y_{n^2+1}, \dots, y_m]$ and it remains only to show that $\delta[x; y] \neq 0$ in R. Indeed, since $d_{n^2+1}[x; y] = 0$ holds also in every R/P , P a prime ideal in R, it follows that $pid(R/P) \le n$. If $pid(R/P) = n$ for some P then we can reproduce the proof of Theorem 3. Otherwise, $q[a] \in \bigcap P$ = Lower radical, and so $q[a]$ is nil, which is impossible in our case.

3. Application I

We apply (4) to obtain a refinement of a result of Formanek [5]; but first we introduce the following:

Let R be a ring with a center C and assume that R has an alternating central identity $\delta[x; y] = \delta[x_1, \dots, x_m; y_1, \dots, y_t]$. Denote by Δ the additive group generated by all values $\{\delta[a;b]\}, a_i, b_i \in \mathbb{R}$; then Δ is an ideal in C and by definition $\Delta \neq 0$. Indeed for every $c \in C$, $\delta [a_1, \dots, a_m; b_1, \dots]c = \delta [a_1c, a_2 \dots]$ since $\delta[x; y]$ is linear and homogeneous in x_1 , and by definition Δ is an additive subgroup of C.

THEOREM 6. If R satisfies $d_{m+1}[x; y]=0$ and $\delta[x_1, \dots, x_m; y_1, \dots]$ is an *alternating central identity for R, (e.g. if R is semi-prime and* pid(R) = *n then such identities exist for* $m = n^2$ *, then*

1) *for every ideal A of R*, $\Delta A \subseteq (A \cap C)R \subseteq A$;

2) the ring of quotients R_{δ} is a free C_{δ} -module of rank m for every $\delta \in \Delta$ for *which* $R_{\delta} \neq 0$ (*i.e.* $\delta^{h} R \neq 0$ for all $h \geq 0$);

3) If, for some $\delta \in \Delta$, δ is a nonzero divisor in C then there exists a subalgebra $A = \sum_{i=1}^{m} Ca_i$ which is free of rank m over C and for which $\delta^2 R \subseteq A \subseteq R$; *moreover, R can be embedded in a free C-module of rank m.*

Indeed, consider the coefficients of (4) and note that if $a \in A$, then $\delta[r_1, \dots, r_{i-1}, a, r_{i-1}, \dots, r_m; s_i, \dots] \in A \cap C$. Consequently, for $a \in A$ and $r_i, s_j \in R$, it follows by (4) that

(6)
$$
\delta[r_1, \dots, r_n; s_1, \dots]a = \sum_i \pm \delta[r_1, \dots, r_{i-1}, a, r_{i+1}, \dots]r_i \in (A \cap C)R
$$
, from which (1) follows immediately.

To prove (2), let $\delta = \delta[r_1, \dots, r_n^2; s_1, \dots] \in \Delta$; then it follows by (4) that, for every $r \in R$, $\delta r = \sum_{i=1}^m c_i r_i$, where $c_i = \delta[r_1, \dots, r_{i-1}, r, \dots] \in C$. Hence the ring of quotients R_{δ} is generated over C_{δ} by r_1, \dots, r_n . These elements are also C_6 - independent: for let $\Sigma c_i r_i = 0$ in R_6 , i.e. $\Sigma \delta^* c_i r_i = 0$ for some power δ^* . Hence,

$$
0 = \delta \Bigg[r_1, \dots, r_{i-1}, \sum \delta^k c_i r_j, r_{i+1}, \dots, r_m; s_1, \dots, s_t \Bigg]
$$

=
$$
\sum_j \delta^k c_j \delta[r_1, \dots, r_{i-1}, r_j; r_{i+1}, \dots, r_m; s_1, \dots, s_t] = \delta^{k+1} c_i
$$

since, for all $j \neq i$, $\delta[r_1, \dots, r_{i-1}, r_i, \dots] = 0$ as two of its entries are equal, and for $i = j$, $\delta[r_1, \dots, r_{i-1}, r_i, \dots] = \delta$. The last relation means that for all i, $c_i = 0$ in R_{δ} .

Vol. 22, 1975 **IDENTITIES** 133

Part (3) follows now easily, for let $\delta = \delta[r_1, \dots, r_n; s_1, \dots] \neq 0$ and choose $a_i = \delta r_i$. It follows by (4) that $\delta r = \sum_{i=1}^m c_i r_i$, $c_i \in C$ and hence $a_i a_j = \delta(\delta r_i r_j) =$ $\delta \Sigma c_{ijk} r_k = \Sigma c_{ijk} a_k$, i.e. $A = \Sigma C a_i$ is a subalgebra of R.Furthermore, the previous relation shows that $\delta^2 R \subseteq \delta \Sigma C r_i = \Sigma C a_i = A$. Finally, the $\{a_i\}$ and the $\{r_i\}$ are C-independent, for if $\Sigma c_i r_i = 0$ then, as in the previous proof, it follows that $\delta^k c_i = 0$, and thus $c_i = 0$. Clearly R is embeddable in the free C-module $\sum C(r_i/\delta)$ in R_{δ} .

This extends a result which was proved for prime rings by Formanek ([5]).

4. Application II: M. Artin theorem

We apply the previous results combined with an idea of Rowen [8] to obtain a straightforward proof of the famous theorem of M. Artin ([3]), which we prove in a more general but in a slightly different form:

THEOREM 7. *Let R be an algebra with a unit ; then R is an Azumaya algebra of rank n² if and only if R satisfies the identity* $d_{n^2+1}[x; y] = 0$ *and*

(A) *R* has an alternating central identity $\delta[x_1, \dots, x_{n^2}; y_1, \dots, y_m]$ which does *not vanish in every quotient R/M, M a maximal ideal in R.*

A condition equivalent to (A) is:

(A') *R has a regular central identity of the type of Corollary 5 and for every maximal ideal R/M is central simple of dimension* n^2 *over its center (or equivalently* $d_n z[x; y] \neq 0$ *in R/M*).

PROOF. First we assume (A) and we prove that for every prime ideal \mathcal{R} in the center C of R there exists a prime ideal P in R such that $P \cap C \subset \mathcal{D}$ and $P \supseteq \mathcal{R}$ (hence $P \cap C = \mathcal{R}$).

Indeed, let P be an ideal in R maximal with respect to the property $P \cap C \subseteq \mathcal{B}$. Then P is a prime ideal, for if $AB \subseteq P$ with A, B two ideals containing P, then $(A \cap C)(B \cap C) \subseteq AB \cap C \subseteq \mathcal{R}$. Since \mathcal{R} is prime, say $A \cap C \subseteq \mathcal{P}$, then by the maximality of P it follows that $A \subseteq P$ as required. The alternating central polynomial $\delta[x; y]$ does not vanish on R/P since it does not vanish on some R/M for some maximal $M \supseteq P$, so let $\delta_0 = \delta [a_1, \dots, b_m] \not\in P$. Assume that $P \cap C \neq \emptyset$ and let $\alpha \in \emptyset$, $\alpha \notin P$; then since P is a prime ideal, $\alpha\delta_0 \notin P$ and, therefore, $(\alpha\delta_0 R + P) \cap C \not\subseteq \mathcal{R}$ by the maximality of P. Consequently, $\beta = \alpha \delta_0 r + p$ for some central $\beta \notin \mathcal{R}$ and $p \in P$. In the quotient ring $R/P = R$ we have $\bar{\beta} = \alpha \bar{\delta}_0 \bar{r}$ and $\bar{r} \in \text{Cent}(\bar{R})$; thus $\bar{\delta}_0 \bar{r} = \delta [\bar{a_1}, \cdots, \bar{b_m}] \bar{r} =$ $\delta [a_1\bar{r},\cdots,\bar{b}_m] = \bar{\delta}_1$, where $\delta_1 = \delta [a_1\bar{r},\cdots,b_m] \in C$, and hence $\bar{\beta} = \alpha \bar{\delta}_1$. It follows, therefore, that $\beta - \alpha \delta_1 \in P$ and, as β , $\alpha \delta_1 \in C$, $\beta - \alpha \delta_1 \in P \cap C \subseteq \mathcal{C}$; but $\alpha \in \mathcal{B}$ and so $\beta \in \mathcal{B}$, which is a contradiction. Hence $\mathcal{B} \subseteq P \cap C \subseteq P$.

Now let \mathfrak{M} be a maximal ideal in C; then by our previous result there exists a maximal ideal M in R such that $M \supseteq \mathcal{W}$. By assumption $\delta[x; y]$ does not vanish on *R/M* so we get $\delta = \delta[a;b] \neq 0 \text{ mod } M$ and hence $\delta \notin \mathfrak{M}$. It follows now by (2) of Theorem 6 that R_s is a free C_s -module of rank n^2 ; this proves by Bourbaki [2](II, theor. 2, p. 141) that R is C-projective of rank n^2 . Finally, by (1) of Theorem 6, $\delta M \subset (M \cap C)R \subset \mathfrak{M}R$. Since \mathfrak{M} is maximal and $\delta \notin \mathfrak{M}$ we have $\alpha\delta = 1$ mod \mathfrak{M} for $\alpha \in \mathbb{C}$ and therefore, $M \subseteq \alpha\delta M + \mathfrak{M}R \subseteq$ $\mathfrak{M}R \subseteq M$. Consequently, $M = \mathfrak{M}R$ and thus $R/\mathfrak{M}R = R/M$ is by assumption a central simple algebra of dim n^2 over its center. Thus, by Bourbaki [2] (def. 14 of II, §5, p. 180), R is an Azumaya algebra of rank n^2 . Note, that a simple consequence of this result is $\Delta = C$, since $\Delta \not\subset \mathfrak{M}$ for every maximal ideal \mathfrak{M} .

The converse: if R is an Azumaya algebra of rank n^2 then R satisfies all identities of $M_n(Z)$; in particular it will satisfy $d_{n^2+1}[x; y] = 0$ and, by Theorem 3, it has an alternating central identity which does not vanish in every $M_n(\bar{K})$ and hence also in every *R/M.*

Finally, (A') is equivalent to (A): for if R satisfies (A') then by Corollary 5, R has an alternating central identity $\delta[x; y]$ which does not vanish for all $M_n(\overline{K})$. Now, each *R/M* is a prime algebra over some $\bar{K} = K + M/M$ and *R/M* is by assumption central simple of dimension $n²$ over its center; hence it follows by *the proof of Theorem 3 that* $\delta[x; y]$ *will not vanish on* R/M *. Conversely if (A)* holds, then since R/M satisfies $d_{n^2-1}[x; y] = 0$ it follows that $pid(R/M) \le n$. On the other hand, the fact that $\delta [x_1, \dots, x_n; y_1, \dots] \neq 0$ on R/M and that $\delta [x; y]$ vanishes if the $n^2 x_i$ are linearly dependent over the center of R/M proves that $pid(R/M) = n$, i.e. R/M is central simple of dimension $n²$ over its center. Furthermore, the existence of such an identity follows from the fact that R satisfies all identities of $M_n(Z)$. Note that in the proof one needs only that the regular identity of R will not necessarily hold for all $M_n(\bar{K})$ as in Corollary 5, but for those $\bar{K} = K/K \cap M \cong K + M/M$, *M* maximal ideals of *R*.

An immediate consequence of the fact that $\Delta = C$ for an algebra satisfying Theorem 7 is that:

COROLLARY 7. *If R satisfies Theorem 7 (i.e. an Azumaya algebra of rank n²) then* $A = (A \cap C)R$ for every ideal A in R. Generally, for arbitrary rings R *which satisfy Theorem 6, if* $A \cap C + \Delta = C$ *then* $(A \cap C)R = A$ *.*

Indeed, by (1) of Theorem 6 it follows that $A = CA = \subseteq \Delta A + (A \cap C)A \subseteq$ $(A \cap C)R \subseteq A$. For Azumaya algebras $\Delta = C$, and so this condition holds for all ideals A.

5. Application III: noetherian Pl-rings

We again apply the previous result, in particular (4), to prove that under certain restrictions the *ACC* condition on two-sided ideals imply that the ring is right and left noetherian.

We consider ring R of the type described in Theorem 6, that is a ring R which satisfies $d_{m+1}[x; y] = 0$ and has an alternative central identity $\delta[x_1, \dots, x_m; y_1, \dots, y_t] = \delta[x; y]$, and let Δ be the ideal in C generated by the values $\{\delta[a;b]\}$. Then:

THEOREM 8. *I[R is a ring with this property and satisfies the ascending chain condition (ACC) on two sided ideals, the R/*(0: Δ) *is right and left noetherian, where*

$$
(0:\Delta)=\left\{r\in R, R\,\Delta\,r=0\right\}.
$$

In particular if R is a prime PI-ring, it satisfies the requirement of this theorem, and furthermore $\Delta (\neq 0)$ contains regular elements and so $(0: \Delta) = 0$. Hence,

COROLLARY 9. (Cauchon [9]). *A prime PI-ring with the* ACC *condition on two sided ideals is noetherian.*

This was the basic result of Cauchon from which it follows that the corollary holds also for semi-prime rings.

PROOF. Since R satisfies the ACC on two-sided ideals, it follows that $R\Delta$ is finitely generated, i.e. $R\Delta = \sum R\delta_i$, where $\delta_i = \delta[a_{i1},\dots,a_{im},b_{i1},\dots]$.

Let $_{R}L$ be a left ideal in R, and the theorem will follow by showing that L is a finitely generated ideal mod $(0: \Delta)$:

For every $x \in L$, it follows by (4) that $\delta_i x = \sum_{j=1}^m c_{ij}(x)a_{ij}$ where $c_{ij}(x) \in C$. Consider the set of all vectors $c(x) = (c_{ij}(x))$ as elements of the direct sum $\bigoplus R = R^{(m)}$ of copies of R. Since R is noetherian as an *R-R* module, so is also $R^{(4)}$; hence, the module $N_L = \sum_{x \in L} R_C(x)$, which is a two-sided R submodule of $R^{(im)}$, is finitely generated. Consequently, there are $u_1, \dots, u_k \in L$ such that $N_L = \sum_{i=1}^k R_C(u_i)$.

Thus for every $x \in L$: $c(x) = \sum a_p c(u_p)$, $a_p \in R$ which means that $c_{ij}(x) =$ $\Sigma_{\rho}a_{\rho}c_{ij}(u_{\rho})$. It follows, therefore, by the definition of ($c_{ij}(x)$), that:

$$
\delta_i x = \sum_i c_{ij}(x) a_{ij} = \sum_i \sum_\rho a_\rho c_{ij}(u_\rho) a_{ij} = \sum_\rho a_\rho \sum_j c_{ij}(u_\rho) a_{ij} = \sum_\rho \delta_i a_\rho u_\rho.
$$

Hence, $\delta_i(x-\Sigma_{\rho}a_{\rho}\mu_{\rho})=0$ which yields $R\Delta(x-\Sigma a_{\rho}\mu_{\rho})=0$. This proves that $L = \sum_{\rho} R u_{\rho} \mod (0: \Delta).$ Q.E.D. We note that the same proof with a slight modification yields:

THEOREM 10. Let R satisfy $d_{m+1}[x; y] = 0$ and have an alternative central *identity* $\delta[x; y]$. If its center C is noetherian then $R/(0: \Delta)$ is a noetherian *C-module; and hence R is also right and left noetherian.*

Indeed replace $R \Delta$ by Δ , which is a C-ideal, and $R^{(m)}$ by $C^{(m)} = \bigoplus C$, and the same arguments will yield the elements $a_{\rho} \in C$, and the rest is similar.

We conclude with two remarks on the ideal $(0, \Delta)$ and on the existence of nonprime rings with an identity $\delta[x; y]$ for which $(0; \Delta) = 0$.

THEOREM 11. Let R be a semi-prime ring with pid $R = n$, and $N_n =$ $\lceil \cdot \rceil$ {P; prime and pid(R/P) = n}. Then for every alternating central identity $\delta[x; y]$ *of Corollary 5 (which exists!) we have* $(0; \Delta) = N_n$.

Indeed, first note that $\delta[x; y] = \delta[x_1, \dots, x_n^2; y_1, \dots] = 0$ in every quotient *R/P* for which pid $R/P < n$, since $\delta[x; y] = 0$ vanishes if the x_i and dependent over the center of R/P , which is always the case if pid $R/P < n$. Hence, $\Delta N_n \subseteq P$ for every prime ideal in R since either $\Delta \subseteq P$ or $N_n \subseteq P$, and so $\Delta N_n = \bigcap P = 0$ in the semi-prime ring R. Thus $N_n \subset (0:\Delta)$.

To prove the converse, let $a \notin N_n$; then $a \notin P$ for some prime P with $pid R/P = n$. But $\delta[x; y] \neq 0 \mod P$ by the proof of Corollary 5, and so $\delta[u; v]$ $a \neq 0$ mod P for some $u_i, v_i \in R$. Thus $a \notin (0; \Delta)$ and, therefore, $(0:\Delta) \subseteq N_n$. Q.E.D.

REMARK. It is worth pointing out that, with the exception of Application II, (Section 4) R is not assumed to contain a unit.

The last theorem enables us to introduce an induction process in handling semi-prime rings:

LEMMA 12. Let R be a semi-prime ring with pid $R = n$ with center C, then *the subring* $R' = C + N_n$ *is a semi-prime ring with the same center and* pid $R' < n$.

It is easily verified that R' is semi-prime. Let $N'_n = \bigcap P$ where P ranges over all primes for which pid $R/P < n$; then $N'_n \cap N_n = 0$ in the semi-prime ring R. Hence, $N_n \cong (N_n + N_n')/N_n' \subseteq R/N_n'$ and so N_n will also satisfy $d_{m+1}[x; y] = 0$ with $m < n^2$. Now R' is a central extension of N_n and therefore will also satisfy the same identity, which yields pid $R' < n$.

Also, if $u \in N_n \cap \text{Cent}(R')$, then for every $r \in R$, $a \in N_n$, $0=$ $u(ar) - (ar)u = a(ur - ru)$, and so $ur - ru \in N_n \cap (0: N_n) = 0$. Thus, $u \in \text{Cent } R = C$.

This induction process clearly yields Formanek's result:

COROLLARY 13. (Formanek [5]). *A semi-prime PI-ring R with a noetherian center C is C-noetherian and hence noetherian.*

The ring R/N_n is C-noetherian by Theorems 10 and 11. The C-module N_n is **a submodule of R ', on which by the previous lemma we can use an induction on** the pid of the ring. So N_n is also a noetherian C -module, and the proof follows now from the exact sequence $0 \rightarrow N_n \rightarrow R \rightarrow R/N_n \rightarrow 0$.

REFERENCES

1. S. A. Amitsur, *Polynomial identities andAztimaya algebras,* J. Algebra 27 (1973), 117-125.

2. N. Bourbaki, *Algbbre commutative,* Ch. 2, Hermann, Paris, 1961.

3. M. Artin, *On Azumaya algebras and finite dimensional representations of rings*, J. Algebra 11 (1969), 532-563.

4. E. Formanek, *Central polynomials [or matrix rings,* J. Algebra 23 (1972),129-132.

5. E. Formanek. *Noetherian PI-rings* (to appear).

6. C. Procesi, *On a theorem o[M. Artin,* J. Algebra 22 (1972), 306--309.

7. Ju. P. Razmyslov, *On the Kaplansky problem* (Russian), Izv. Akad. Nauk. SSSR, Ser. Mat. 37 (1973), 483-501.

8. L. H. Rowen, *On rings with central polynomials,* J. Algebra 31 (1974), 393--426.

9. G. Cauchon, Anneaux semi-premiers, noetheriens, à identités polynômiales (to appear).

INSTITUTE OF MATHEMATICS

THE HEBREW UNIVERSITY OF JERUSALEM JERUSALEM. ISRAEL