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IDENTITIES AND LINEAR DEPENDENCE

BY
S. A. AMITSUR

ABSTRACT

Central polynomial identities are used to construct alternating central iden-
tities by which new identities are obtained. These identities express the linear
dependence of n”+ 1 generic matrices, and so yield slight generalizations and
simplified proofs of a result of Formanek, the theorem about Azumaya
algebras of M. Artin and a recent result of Cauchon.

Among the many central identities of a matrix ring we introduce new
identities 8[xy,- -+, x.2, ¥, -+, ¥m] which are alternating, homogeneous and
linear only in the x;, which can be obtained from any regular central identity.
These new types of identities yield a linear dependence X(—1)"'-
S[x1, %y " Xa2 Y1, , ¥m]X =0 which holds in every prime and semi-
prime ring of “‘identity degree n”. This linear dependence yields rather easily a
result of Formanek [5] on the embedding of a prime Pl-ring into a free
C-module. Moreover, the generalization of this result when combined with an
idea of Rowen [8] on the behavior of regular central identities yields a direct
relatively simple proof fo the famous M. Artin-Procesi theorem ([3],[6]) on
Azumaya algebras. The present proof differs from all other known proofs
([11,(31,[6],18]) as it does not use any trace arguments and no reduction to
prime rings or to homomorphic images of a generic matrix ring. In fact it
enables us to prove that if R satisfies a certain identity d,2,, [x; y] =0and has a
regular central identity which does not vanish on all simple images R/M, then R
is an Azumaya algebra, which is far less than the assumption that all identities
of M, (Z) hold in R. Finally, this identity is used to prove along parallel lines the
result of Formanek that a semi-prime Pl-ring R with a noetherian center is
C-noetherian, and a recent result of Cauchon ([9]) that ACC on two-sided
ideals implies that R is noetherian.
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1. The polynomials d..[x; y]

As a basic polynomial for generating identities of a matrix ring M, (K), we
shall use the following polynomials:

(l) dm [Xl; Cy Xm ; )’1» Y ym—l] = Esgngu))ﬁxa(z)' v xo(m—l)ym—lxo(m)

where o ranges over all permutations of {1,2,---,m}. Our first result is:

TueoreM la. If K is a commutative ring with a unit, then M,(K) satisfies
d.[x,y] =0 forall m =n’+ 1, and for every i # k there is a substitution for x’s
and y's so that d.:[x;y) = cx, where ci are the matrix units.

Proor. The polynomials d.[x; y] satisfy a recursive relation like determin-
ants, that is:

(2) de[Xl,"',XmH;)’l,"',_Ym]

m+1

= Z. (=1 7 (X0 oy B oy Xoears Vo * s Yroct] Y
Thus if d.[x;y] = 0in M,(K) for m = m, then it will hold also for m = m,,.

Since d.[x;y] is multilinear and homogeneous it suffices to show that
d.[x;y]=0 for substitutions of the indeterminates by elements taken from a
linear base of M, (K), but as such we have only n? different elements and so if
m =n’*+ 1, at least two will be equal and hence d..[x; y] =0, since d,,[x; y] =0
if two of the x;’s are equal.

To prove that d.:[x;y]= ca, we restrict ourselves to (i,k)=(1,n) and to
this end we substitute for the set {x,,---,x,7} the ordered set
{CisCizy oy Cias €2ty * *, Camy* * Cn1s"* ", Cnn} and for {y,---, y,.x_.} the set of
{€i1, €21, = *, Cn 115 Ca2y €12, * * *4 €1y * * *5 Cuoin }. Namely, the y’s are chosen so that
the monomial x,y,x,y,- - - y.2_ix,2 will be equal to c,,. In fact, this is the only
monomial which will yield a nonzero element, since if yx,y.., # 0 then x, is
uniquely determined, and therefore if Xx,,¥1X,2 " "X om?1yYaz_1X0m? Yyields a
nonzero element then x,4, = x; fori =2,---,n*— 1. Moreover, since y, = ¢, we
must have X, = c.; and the only one of this form available is ¢, which is equal
to x,. Thus o(1) = 1, and similarly x,,, = ¢.. = x.. Thus o = identity and this
completes the proof that d.x(x; y] = ci..

If R is a prime ring (analgebra overacommutative ring K) which satisfiesa
polynomial identity then its ring of quotients Q(R) is a central simple algebra
of dimension n? over its center, and we define pid (R) = n (-polynomial identity
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degree). If R is a semi-prime ring with a polynomial identity then we set
pid(R) = max pid(R/P) where P ranges over all prime ideals P of R. Clearly,
this generalizes the definition of pid for prime rings.

We can extend Theorem ia to semi-prime rings.

THeorEM 1b: If R is a semi-prime K-algebra and pid(R)=n then R
satisfies dn|x;y]1=0 form =Zn’+1; and d,2[x;y] #0 in R.

Proor: Consider first the case of a prime ring R; then R and its ring of
quotients Q(R) satisfy the same identities. If the center C of Q(R) is finite
then R = Q(R) = M,(C) and so Theorem la coincides with our case. If C is
infinite, choose splitting field F of Q(R). That is, Q(R)® F = M,(F)
and M, (F), Q(R) have the same identities: hence the fact that d,.[x;y]=0in
M, (F) for m = n*+ 1 implies that it holds also in Q(R) as well as in R. Also
d.:[x;y]1#0 in M,(F) and since it is homogeneous and multilinear and
Q(R)=RC, Q(R)® F = M, (F), the polynomial d,:[x; y] cannot vanish on R.

If R is semi-prime then R is a subdirect sum of the prime rings R/P which
satisfy d..[x;y]=0for m Zn*+ 1, so it holds also in R. At least one of R/P
has pid(R/P)=n, and there d.:[x:y]#0; hence this polynomial does not
vanish in R.

2. Alternating central identities

A polynomial p[x,, - Xm ¥\.- -+, y,] is said to be an alternating polynomial
(in the x’s) if p[x; y] is a homogeneous polynomial multilinear onlyinx,, -, x.
and vanishes if two of the x; are made equal. The following follows readily:

LEMMA 2. A polynomial p(xi, -, Xm Y1, -, y.] is alternating in the x’s if
and only if it has the form:

3) plx:yl= Zp,odm (X1 X 3P0 s P 1P
T)

where the p.. are polynomials in the y’s only.

Indeed, write p(x, y] = Z, s0polaXorloXery * * lon. Xaem)l,, Where I, are mono-
mials in the y’s and the a,, are scalar (of K). Since it is multilinear in the x°’s
and alternating, it follows readily that the interchanging of two x; will yield a
change of sign of p[x;y], and this readily implies that «,, = a,,5g ¢ where sgo
is the sign of the respective permutation. Summing up £, = £, 5, clearly yields
(3). The converse is evident.
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A polynomial 8[x; y] will be called an alternating central identity of a ring R,
if 8[x;y] is alternating in the x’s and it is a central identity for R, that is,
8[x; ylis the center of R for all values of x and y but it is not identically zero.

THEOREM 3. Let R be a semi-prime ring with pid(R) = n, then R has an

alternating central identity 8[x,, - -, X.:;y1, " -, Ym ), which holds also for all
M.(K), K an arbitrary commutative ring ; and for each alternating identity the
relation

n2+1
(4) 2 (=1 8xy, K XY Ve X =0

i—1
holds in R. (% denotes the omitting of the x; from the variables of 8§[x;y]).

Proor. Let q[uo, u,,- - -, u.] be any central identity for M, (K) which holds
for every commutative ring K (with a unit) and which is homogeneous and
linear in at least one of the indeterminates, say u.. (These were called regular
central identities in [8].) Such a central identity exists, e.g. the Formanek or
Razmyslov polynomials ([4],[7]). Consider the polynomial:

Olxsyl=qldadxi, - . X33 ¥1, 0+, Yn2oa ] ¥a2; Ynters * * %5 Y ]

where m =n’+1t. 8[x;y] is obtained from q[u] by the replacements u, =
duz[X1, 5, Xa2; Y1y 07y Yol Yoz @and w; = y,2,; for j = 1. Since q[u] is homogene-
ous and linear in uo, 8 [x; y] will be alternating in the x’s. To prove that it is a
central identity we consider first the case where R is a prime ring. Again if the
center of the ring of quotients Q(R) is finite then R = Q(R) = M, (C); since
qlao,a, -, a]#0forsome a; € R and is linear in u,, then g[cy, a,, - -, a,] #0
for some matrix unit ci. It follows, by Theorem la, that d,:[x;y] = c; for j# i
for some substitution in M,(C), and thus if we set y,2= c; and y,2,, = a, we
get 8[x;y]l=qlcu,ar, -+, a,]#0. The same proof shows that §[x; y] does not
vanish in any matrix ring M,(K) over any commutative ring K. Hence, if the
center of Q(R) is an infinite field, R and Q(R) = RC and Q(R)® F = M, (F)
will have the same identities and in particular 8[x; y] which does not vanish in
M. (F) will not vanish in R. On the other hand it gets only central values in
M. (F) and hence it is a central alternating identity for R.

Next, if R is semi-prime, then R is a subdirect sum of the prime rings R/P
and, at least for one P, pid(R/P) = n. Now, 8[x; y]is a central identity for R/P
of pid = n, and if pid(R/P) < n then §[x;y] =0 in R/P since central identities
of M, (K) are identities for M,.(K) for m < n. Thus 8[x, y] is a central identity
for R since it does not vanish for at least one R/ P, and this completes the proof
of the first part of our theorem.
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Let plxi, -+, Xm;y1, - -, ¥:] be any alternating polynomial (not necessarily
central); then it follows by (3) and (2) that:

m-+1
S (=) plxe R Xmery Yro et WX
iz
m+t
= > (= ) 7 palmxi, Riy X3P Do IPe K
i=l T
= D Prolm st X1 X230 * s Xemats Prys " 'y Py 12 P ).

In particular this implies a more general result than (4):

CoroLLARY 4. If R is any ring satisfying the identity d.>.,[x;y]=0(e.g. R is

a semi-prime ring with pid(R)=n),and p[x,," -, X.;¥1," " *, Y. ] is any alternat -
ing polynomial in n’ indeterminates x,, - -, x, then R satisfies the identity:
n?«1
(&) E (— 1)“'9[%. RPN XnZoi Yoo, }’:]X; =0.
i-

Indeed, R satisfies the identity d,z.,[x;y] =0 by Theorem Ib, and thus (5)
follows by the relation proved above for m = n’.
Finally (5) is the required relation (4) of our theorem.

ReMARK. Note that (4) yields the linear dependence of n*+1 generic
matrices in the ring generated by these matrices.
The proof of Theorem 3 actually proves the more general case:

CoroLLARY 5. IfRis a K-algebra which satisfies d.>.,[x;y] =0 and R has a
regular central identity q[u] which does not vanish on all matrix rings M.(K),
K homomorphic image of K, and if either pid(R) = n or q[u] attains non nil
elements, then R has an alternating central identity 8[x,, -+, X2, Y1, *, Ym | With
the same property and (4) holds in R.

In the proof of Theorem 3, the existence of a regular central identity g{u]
was known for prime rings and hence for semi-prime rings with pid(R)=n. In
the present case, we again choose 8[x;y] = qld.:[x;y]Ya2, Ynter,* **, ¥m] and it
remains only to show that 6[x;y]# 0 in R. Indeed, since d,z.,[x;y] =0 holds
also in every R/P, P a prime ideal in R, it follows that pid(R/P)=<n. If
pid(R/P)=n for some P then we can reproduce the proof of Theorem 3.
Otherwise, g[al€ N P = Lower radical, and so gq[a] is nil, which is impossible
in our case.
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3. Application I

We apply (4) to obtain a refinement of a result of Formanek [5]; but first we
introduce the following:

Let R be a ring with a center C and assume that R has an alternating central
identity 8[x;y]=6[x1, -, Xn;¥1,--, %]. Denote by A the additive group
generated by all values {6[a;b]}, a;,b; ER; then A is an ideal in C and by
definition A # 0. Indeed for every ¢ €C, 8[ai, -, am; by, -+ ]Jc =8[ac,as -]
since 8[x; y]is linear and homogeneous in x,, and by definition A is an additive
subgroup of C.

TueoreM 6. If R satisfies dn.i[x;y]1=0 and 8[x,, -, Xn;y:,-+] is an
alternating central identity for R, (e.g. if R is semi-prime and pid(R) = n then
such identities exist for m = n?®), then

1) for every ideal A of R, AAC(ANC)RCA;

2) the ring of quotients R; is a free Cs-module of rank m for every 6 € A for
which R;#0 (i.e. 8"R#0 for all h =0);

3) If, for some & € A, 8 is a nonzero divisor in C then there exists a subalgebra
A =20 Ca; which is free of rank m over C and for which 'R CA CR;
moreover, R can be embedded in a free C-module of rank m.

Indeed, consider the coefficients of (4) and note that if @ € A, then
Slri,- - r na,rie, -~ rm;s,---]J€A NC. Consequently, for a EA and
r,s; € R, it follows by (4) that

(6)  8lri,- - rns, -la=>*8[r, - rnar., -1rn€(ANC)R,

from which (1) follows immediately.
To prove (2), let 6 = &[r, - -, r.2; 81, -] € A; then it follows by (4) that, for

every r € R, ér = " cir;, where ¢; = 8[ry, -+, ri_.,r,- -+ ] € C. Hence the ring of
quotients R; is generated over C; by r,,---, r.». These elements are also
Cs-independent: for let Sc;r; =0 in Rs, i.e. £8*¢;r; =0 for some power 8%
Hence.
0= 5["1,' S B, BRI T P Sy -,s,]
= 85 Blr, Rl iy P Se e, s ] =85
7

since, forall j# i, 8{r.,---,ri_i,r,---1=0as two of its entries are equal, and for
i=j,8[r, -, ri-i,f---]=28. The last relation means that for all i, ¢; =0 in R;.

Q.E.D.



Vol. 22, 1975 IDENTITIES 133

Part (3) follows now easily, for let 8 = 8(r,, -+, r.2;8,,- - -1 #0 and choose
a; = or.. It follows by (4) that 6r = 2L ciri, ¢c. € C and hence a:q; = 8(ér.r;) =
dZcun = Zcyudy, i.e. A = ZCa; is a subalgebra of R.Furthermore, the previous
relation shows that 8°R C 8=Cr, = 2Ca, = A. Finally, the {a;} and the {r;} are
C-independent, for if Ec;r; = 0 then, as in the previous proof, it follows that
8*: =0, and thus ¢, =0. Clearly R is embeddable in the free C-module
2C(r/8) in R..

This extends a result which was proved for prime rings by Formanek ([5]).

4. Application II: M. Artin theorem

We apply the previous results combined with an idea of Rowen [8] to obtain a
straightforward proof of the famous theorem of M. Artin ([3]), which we prove
in a more general but in a slightly different form:

THEOREM 7. Let R be an algebra with a unit ; then R is an Azumaya algebra
of rank n’ if and only if R satisfies the identity d,:..[x;y] =0 and

(A) R has an alternating central identity 8[x,,- - -, X.2; ¥4, - * -, ym ] which does
not vanish in every quotient R/M, M a maximal ideal in R.

A condition equivalent to (A) is:

(A’') R has a regular central identity of the type of Corollary 5 and for every
maximal ideal R/M is central simple of dimension n® over its center (or
equivalently d,:[x;y]#0 in R/M).

Proor. First we assume (A) and we prove that for every prime ideal P in
the center C of R there exists a prime ideal P in R such that PN C C P and
P DB (hence PN C =P).

Indeed, let P be an ideal in R maximal with respect to the property
PNCCY. Then P is a prime ideal, for if ABCP with A, B two ideals
containing P, then (A NCYBNC)CABNCCP. Since P is prime, say
A N C C %P, then by the maximality of P it follows that A C P as required. The
alternating central polynomial §[x; y] does not vanish on R/P since it does not
vanish on some R/M for some maximal M 2 P, so let §,=8[a,,-,b.]E P.
Assume that PNC# P and let « €L, a & P; then since P is a prime ideal,
ado& P and, therefore, (ad,R + P)N CZ P by the maximality of P. Conse-
quently, B = ador + p for some central B& B and p € P. In the quotient ring
R/P=R we have B =abor and r € Cent(R); thus &,r =8[a,, -, b,]r =
slair, -+, bn1=24,, where 8,=8[a,r,",b.]€ C, and hence § = ab,. It fol-
lows, therefore, that 8 — a8, € P and, as B, a8, € C, B — ad, € PN C C P; but
a € and so B €, which is a contradiction. Hence §CPNCCP.
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Now let )¢ be a maximal ideal in C; then by our previous result there exists a
maximal ideal M in R such that M D I. By assumption 8[x;y] does not
vanish on R/M so we get 8 =68[a;b]#0 modM and hence §&Z M. It
follows now by (2) of Theorem 6 that R, is a free C,-module of rank n?; this

proves by Bourbaki [2](I, theor. 2, p. 141) that R is C-projective of rank n?.
Finally, by (1) of Theorem 6, 8M C (M N C)R C MR. Since I is maximal and
dZ M we have ad =1 mod M for a € C and therefore, M C aSM +IMR C
PR C M. Consequently, M = MR and thus R/TR = R/M is by assumption a
central simple algebra of dim n? over its center. Thus, by Bourbaki [2] (def. 14
of II, §5, p. 180), R is an Azumaya algebra of rank n>. Note, that a simple
consequence of this resultis A = C, since A Z M for every maximal ideal .

The converse: if R is an Azumaya algebra of rank n’ then R satisfies all
identities of M, (Z); in particular it will satisfy d,2.,[x; y] = 0 and, by Theorem
3, it has an alternating central identity which does not vanish in every M, (K)
and hence also in every R/M.

Finally, (A’) is equivalent to (A): for if R satisfies (A’) then by Corollary 5, R
has an alternating central identity 8[x ; y] which does not vanish for all M, (K).
Now, each R/M is a prime algebra over some K = K + M/M and R/M is by
assumption central simple of dimension n” over its center; hence it follows by
the proof of Theorem 3 that 8[x; y] will not vanish on R/M. Conversely if (A)
holds, then since R/M satisfies d,z.,[x; y] = 0 it follows that pid(R/M) < n. On
the other hand, the fact that 8[x,,- -+, x.2; ¥,,- -] # 0 on R/M and that §[x;y]
vanishes if the n® x; are linearly dependent over the center of R/M proves that
pid(R/M)=n, i.e. R/M is central simple of dimension n? over its center.
Furthermore, the existence of such an identity follows from the fact that R
satisfies all identities of M,(Z). Note that in the proof one needs only that the
regular identity of R will not necessarily hold for all M,(K) as in Corollary 5,
but for those K = K/K N M =K + M/M, M maximal ideals of R.

An immediate consequence of the fact that A = C for an algebra satisfying
Theorem 7 is that:

CoroLLARY 7. If R satisfies Theorem 7 (i.e. an Azumaya algebra of rank n?)
then A =(A N C)R for every ideal A in R. Generally, for arbitrary rings R
which satisfy Theorem 6, if ANC+A=C then (ANC)R = A.

Indeed, by (1) of Theorem 6 it follows that A =CA = CAA+(ANC)AC
(A N C)R C A. For Azumaya algebras A = C, and so this condition holds for all
ideals A.
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5. Application III: noetherian PI-rings

We again apply the previous result, in particular (4), to prove that under
certain restrictions the ACC condition on two-sided ideals imply that the ring is
right and left noetherian.

We consider ring R of the type described in Theorem 6, that is a ring R
which satisfies d..[x;y]=0 and has an alternative central identity
S[xy, ", Xm3¥y1,o -+ ¥ ] =8[x;y], and let A be the ideal in C generated by the
values {6[a;b]}. Then:

THeoreM 8. If R is a ring with this property and satisfies the ascending chain
condition (ACC) on two sided ideals, the R/(0: A) is right and left noetherian,
where

(0:A)={re R,RAr =0}.

In particular if R is a prime Pl-ring, it satisfies the requirement of this
theorem, and furthermore A(# 0) contains regular elements and so (0: A) = 0.
Hence,

CoroLLARY 9. (Cauchon [9]). A prime Pl-ring with the ACC condition on
two sided ideals is noetherian.

This was the basic result of Cauchon from which it follows that the corollary
holds also for semi-prime rings.

Proor. Since R satisfies the ACC on two-sided ideals, it follows that
RA is finitely generated, i.e. RA = ZR8§;, where 8 = 8[ai,"**, @m, bir, - - ].

Let <L be a left ideal in R, and the theorem will follow by showing that L is a
finitely generated ideal mod(0: A):

For every x €L, it follows by (4) that 8x = Z,c;(x)a, where ¢c;(x) € C.
Consider the set of all vectors c(x) = (c;(x)) as elements of the direct sum
@ R = R“™ of copies of R. Since R is noetherian as an R-R module, so is
also R“™; hence, the module N, =3,c;Rc(x), which is a two-sided R
submodule of R“™, is finitely generated. Consequently, there are U, ", u €L
such that N, = T, Rc (u;).

Thus for every x €L: c(x) = Za,c(4,), a, € R which means that c;(x) =
2.a,ci(u,). It follows, therefore, by the definition of (c;(x)), that:

6x = ZC,-,» (xX)a; = EZa,,c.»,-(u,,)a,-,- = Za,,zc,,-(u,,)a[,- = E«S.—a,u,,.
i [ s i I

i
Hence, 8:(x —Z,a,u,) =0 which yields RA(x —Za,u,)=0. This proves that
L =3,Ru, mod(0: A). Q.E.D.
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We note that the same proof with a slight modification yields:

THEOREM 10. Let R satisfy d...\[x;y] =0 and have an alternative central
identity 8[x;y]. If its center C is noetherian then R/(0:A) is a noetherian
C-module; and hence R is also right and left noetherian.

Indeed replace RA by A, which is a C-ideal, and R“™ by C*™ = @C, and the
same arguments will yield the elements g, € C, and the rest is similar.

We conclude with two remarks on the ideal (0: A) and on the existence of
nonprime rings with an identity &[x;y] for which (0: A) =0.

THEOREM 11. Let R be a semi-prime ring with pidR =n, and N, =
M {P; prime and pid(R/P) = n}. Then for every alternating central identity
8(x;y] of Coroliary 5 (which exists!) we have (0: A) = N,.

Indeed, first note that 8[x;y]=8[xi, -, x.%; ¥1,* - -1 =0 in every quotient
R/P for which pid R/P < n, since §(x; y] = 0 vanishes if the x; and dependent
over the center of R/P, which is always the case if pid R/P < n. Hence,
AN, CP for every prime ideal in R since either ACP or N, CP, and so
AN, = NP =0 in the semi-prime ring R. Thus N, C(0: A).

To prove the converse, let a& N, ; then a& P for some prime P with
pidR/P =n. But 8[x;y]#0 modP by the proof of Corollary 5, and so
8[u;v]a#0 modP for some u,v; ER. Thus aZ(0:A) and, therefore,
(0:A)C N,. Q.E.D.

REMARK. It is worth pointing out that, with the exception of ApplicationII,
(Section 4) R is not assumed to contain a unit.

The last theorem enables us to introduce an induction process in handling
semi-prime rings:

LemMMa 12. Let R be a semi-prime ring with pid R = n with center C, then
the subring R'=C+ N, is a semi-prime ring with the same center and
pidR’' <n.

It is easily verified that R’ is semi-prime. Let N, = N P where P ranges over
all primes for which pid R/P < n; then N.N N, =0 in the semi-prime ring R.
Hence, N, =(N, + N,)/N,CR/N/ and so N, will also satisfy d,..[x;y]=0
with m < n’ Now R’ is a central extension of N, and therefore will also satisfy
the same identity, which yields pid R’ < n.

Also, if w€&€N,NCent(R’), then for every r€ER, a€N, 0=
u(ar)—(ar)u =a(ur—ru), and so ur—-ru€N,NO:N,)=0. Thus,
u€eCentR =0C.
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This induction process clearly yields Formanek’s result:

CoroLLAry 13. (Formanek [S]). A semi-prime Pl-ring R with a noetherian
center C is C-noetherian and hence noetherian.

The ring R/ N, is C-noetherian by Theorems 10 and 11. The C-module N, is
a submodule of R’, on which by the previous lemma we can use an induction on
the pid of the ring. So N, is also a noetherian C-module, and the proof follows
now from the exact sequence 0 > N, - R - R/N, - 0.
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