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IDENTITIES AND LINEAR DEPENDENCE 

BY 

S. A. AMITSUR 

ABSTRACT 

Central polynomial identities are used to construct alternating central iden- 
tities by which new identities are obtained. These identities express the linear 
dependence of n 2 + 1 generic matrices, and so yield slight generalizations and 
simplified proofs of a result of Formanek, the theorem about Azumaya 
algebras of M. Artin and a recent result of Cauchon. 

Among  the many  central identities of a matrix ring we introduce new 

identities ~[x,...,x,2, y~,...,y,,] which are alternating, homogeneous  and 

linear only in the xi, which can be obtained f rom any regular central  identity. 

These  new types of  identities yield a linear dependence  E ( - 1 )  i-I- 

~[x , , - . ,2~ , . . . ,xn2 ;y~ ,  . . . ,ym]x~ = 0  which holds in every  prime and semi- 

pr ime ring of " identi ty degree n". This linear dependence  yields rather  easily a 

result  of Fo rmanek  [5] on the embedding of a pr ime PI-ring into a free 

C-module .  Moreover ,  the generalization of this result when combined with an 

idea of Rowen [8] on the behavior  of regular central identities yields a direct 

relatively simple proof  fo the famous  M. Art in-Procesi  theorem ([3],[6]) on 

A z u m a y a  algebras.  The present  proof  differs f rom all other known proofs  

([1],[3],[6],[8]) as it does not use any t race arguments  and no reduction to 

pr ime rings or to homomorph ic  images of a generic matrix ring. In fact  it 

enables us to prove  that if R satisfies a certain identity d.2§ [x ; y] = 0 and has a 

regular central  identity which does not vanish on all simple images R/M, then R 

is an A z u m a y a  algebra, which is far  less than the assumpt ion that all identities 

of Mn (Z) hold in R. Finally, this identity is used to prove  along parallel lines the 

result of Fo rmanek  that a semi-prime PI-ring R with a noetherian center  is 

C-noether ian,  and a recent  result of Cauchon ([9]) that ACC on two-sided 

ideals implies that R is noetherian.  
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1. The polynomials d~ [x ; y ] 

As a basic polynomial  for  genera t ing  identities o f  a matrix ring M , ( K ) ,  we 

shall use the fol lowing po lynomia ls :  

(I)  d,.[X~,"' ,x~,;y~,"' ,y, .- j]=~sgtrx~.~y~x~2~'"X.c~,_~y,~-ix~m~ 

where  o- ranges over  all pe rmuta t ions  of  { 1 , 2 , . . - ,  m}. Our  first result  is: 

THEOREM ia. If  K is a commutat ive ring with a unit, then M , ( K )  satisfies 

d,, Ix, y ] = 0 for all m >- n 2 + l, and for  every i ~ k there is a substitution [or x ' s  

and y 's  so that d . , [ x ; y ]  = c~,, where c~k are the matrix units. 

PROOF. The  polynomia ls  dm [x ; y]  sat isfy a recurs ive  relation like de termin-  

ants ,  that is: 

(2) d . . + , [ x , . " ' . x . . + . ; y , , "  ", y..] 

m + l  

-- ~ ( -  l) '- 'd,, rx , , . . . , . r  y , , . . . ,  y,,_,]y,,x,. 

Thus  if d.~ Ix ; y]  = 0 in M , ( K )  for  m -- mo then it will hold also for  m _> mo. 

Since d . . [ x ; y ]  is multi l inear and h o m o g e n e o u s  it suffices to show that 

d,, Ix ; y ]  = 0 for  substitutions of  the indeterminates by e lements  taken f rom a 

l inear base of  M , ( K ) ,  but  as such we have  only  n 2 different  e lements  and so if 

m - n ~ + l, at least two will be equal and hence  d,, Ix ; y ] -- 0, since d., [x ; y ] = 0 

if two of  the x, ' s  are equal.  

To  p rove  that  d.2[x; y]  = c;~, we restrict  ourse lves  to (i, k ) - - ( I ,  n)  and to 

this end we subst i tute  for  the set {x~,-.. .x,~} the o rdered  set 

{ c ~ , , c , 2 , . . . , c ~ , ; c 2 R , - . . , c ~ , , . . . , c . , , . . . , c , , }  and for  { y , . . . , y . ~ _ , }  the set of  

{c~, c 2 , , . . . ,  c. ,~, c.2, c~ : , . . . ,  c~.,- �9 c,_~,}. Namely ,  the y ' s  are chosen  so that  

the monomia l  x ,y ,x2y2 . . ,  y,2_,x,~ will be equal to c,,.  In fact ,  this is the only  

monomia l  which  will yield a nonze ro  e lement ,  since if y,x~y~+, ~ 0 then xA is 

uniquely  de termined ,  and therefore  if x~,t~y~x~tE)"'x~,t,~-~)y,~-~x~.(,~) yields a 

nonze ro  e lement  then x~,~ = x, fo r  i = 2, �9 �9 n 2 - I. Moreover ,  since y~ = c .  we 

must  have  x~,) = co~ and the only one of  this fo rm available is cz~ which is equal 

to x~. Thus  tr(1) = 1, and similarly x,~,~ = c, ,  = x.. Thus  or = identi ty and this 

comple tes  the p roof  that  d,~(x ; y]  = c,,.  

I f  R is a pr ime ring (an a lgebra  o v e r  a c o m m u t a t i v e  ring K )  which satisfies a 

po lynomia l  identi ty then its ring of  quot ients  Q ( R )  is a central  s imple algebra 

o f  d imens ion  n 2 over  its center ,  and we define pid (R)  = n ( -po lynomia l  identi ty 



VOI. 22, 1975 IDENTITIES 129 

degree). If R is a semi-prime ring with a polynomial identity then we set 

p id(R)  = max pid(R/P) where P ranges over  all prime ideals P of R. Clearly, 

this generalizes the definition of pid for prime rings. 

We can extend Theorem la to semi-prime rings. 

THEOREM lb: If R is a semi-prime K-algebra and p i d ( R ) =  n then R 
satisfies dm[x ; y] = 0 for m >- n 2+ 1; and d.,[x ; y] # 0 in R. 

PROOF: Consider first the case of a prime ring R;  then R and its ring of 

quotients Q(R) satisfy the same identities. If the center  C of Q(R) is finite 

then R = Q(R)= M.(C) and so Theorem la coincides with our case. If C is 

infinite, choose splitting field F of Q(R). That is, Q ( R ) @ F = M . ( F )  
and M, (F ) ,  Q(R) have the same identities: hence the fact that dm [x ; y] = 0 in 

Mn(F) for m -> n2+ l implies that it holds also in Q(R) as well as in R. Also 

d o ~ [ x ; y ] # 0  in M,(F) and since it is homogeneous and multilinear and 

Q(R) = RC, Q(R) @ F = M, (F),  the polynomial d,~[x; y] cannot  vanish on R. 

If R is semi-prime then R is a subdirect sum of the prime rings R/P  which 

satisfy dm[x;y] = 0 for m _-> n2+ 1, so it holds also in R. At least one of R/P  
has pid(R/P)= n, and there d , : [ x ; y ] # 0 ;  hence this polynomial does not 
vanish in R. 

2. Alternating central identities 

A polynomial p [x~,-..,x,~. y~, . - . ,  y,] is said to be an alternating polynomial 

(in the x 's)  if p [x ; y] is a homogeneous polynomial multilinear only in x , , .  �9 x~, 

and vanishes if two of the x, are made equal. The following follows readily: 

LEMMA 2. A polynomial p[x~,...,xm, y~,. . . ,y,] is alternating in the x's if 
and only if it has the form : 

(3) p l x ;  y]  = ~p.od~ [ x , , . .  ".xm ;pT,,'" ",p . . . .  ]p. .  
( r )  

where the p,, are polynomials in the y's only. 

Indeed, write p[x, y] = E~.,,a,,~l,,ox,,,fl,,,x~m"" l,,.,x,~,,,fl,,, where l,,, are mono- 

mials in the y ' s  and the a ~  are scalar (of K).  Since it is multilinear in the x ' s  

and alternating, it follows readily that the interchanging of two x, will yield a 

change of sign of p [x ; y ], and this readily implies that a~, = a~,sg rr where sgo- 

is the sign of the respective permutation. Summing up E~  = E ~  clearly yields 

(3). The converse is evident. 
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A polynomial  6 [x ; y] will be called an alternating central identity of a ring R, 

if 6 [ x ; y ]  is alternating in the x ' s  and it is a central identity for R, that is, 

6Ix ; y] is the center  of R for  all values of x and y but it is not identically zero. 

THEOREM 3. Let R be a semi-prime ring with p i d ( R ) =  n, then R has an 

alternating central identity 6[x , , . . . ,x ,2;y , , . . . ,y , , ] ,  which holds also for all 

M, ( K ), K an arbitrary commutative ring; and [or each alternating identity the 

relation 
n2~]  

(4) ~ ( - 1)' ' , ~ [ x , , - . . , . f , , . . . , x , 2 ~ , ; y , , . . . ,  y,, ]x, = 0 
i - I  

holds in R. (.f, denotes the omitting o / the  xl from the variables o /6[x ;y] ) .  

PROOF. Let  q [Uo, u , , . . . ,  u,] be any central identity for M, (K)  which holds 

for  every  commuta t ive  ring K (with a unit) and which is homogeneous  and 

linear in at least one of  the indeterminates,  say uo. (These were called regular 
central identities in [8].) Such a central identity exists, e.g. the Formanek  or 

Razmys lov  polynomials  ([4],[7]). Consider  the polynomial:  

6 [x ; y ] = q [d.~[x,, �9 �9 -, x,2;y,, �9 �9 y,,_,}y,~;y,,.,, �9 �9 y,. ] 

where m =n2+t .  6[x;y] is obtained f rom q[u] by the rep lacements  uo= 

d, ,[x , , . . . ,  x,,; y , , . . . ,  y,,_,] y,, and uj = y,,+j for ./_-> 1. Since q[u] is homogene-  

ous and linear in uo, 6 I x ; y ]  will be alternating in the x ' s .  To prove  that it is a 

central  identity we consider  first the case where R is a prime ring. Again if the 

center  of  the ring of quotients Q(R)  is finite then R = Q(R) = M, (C) ;  since 

q[ao, a,, . �9 a, ] # 0 for some al E R and is linear in uo, then q[cik, a,, . �9 a, ] # 0 

for some matrix unit c,k. It follows, by Theorem la, that d , , [x ;  y] = ci~ for ./# i 

for some substitution in M,(C),  and thus if we set y,, = ci~ and y,,+~ = a~ we 

get 6[x;y] = q [ c ~ k , a , , . . . , a , ] # 0 .  The same proof  shows that 6[x;y] does not 

vanish in any matrix ring M , ( K )  over  any commuta t ive  ring K. Hence,  if the 

center  of Q(R)  is an infinite field, R and Q(R) = RC and Q(R)  Q F ~ M, (F)  

will have  the same identities and in particular 8[x ; y] which does not vanish in 

M,(F)  will not vanish in R. On the other hand it gets only central values in 

M,(F)  and hence it is a central alternating identity for R. 

Next ,  if R is semi-prime, then R is a subdirect  sum of the prime rings R / P  

and, at least for one P, pid(R/P) = n. Now, 6 [x ; y ] is a central identity for  R / P  

of pid = n, and if pid(R/P) < n then 6 Ix ; y] = 0 in R/P  since central identities 

of M , ( K )  are identities for M,,(K)  for  m < n. Thus 6Ix, y] is a central identity 

for R since it does not vanish for at least one R/P, and this completes  the p roof  

of  the first part  of  our  theorem.  
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Let  p [ x , , . . . , x m  ;y , , . .  ",y,] be any alternating polynomial (not necessarily 

central); then it follows by (3) and (2) that: 

m ~ l  

( - ) ' - ' p  [ x , , . . . ,  .~ , , . . . ,  x , , . , ;  y , , . . . ,  y, Ix, 
i = 1  

m + l  

= ~ ( -  I) '- 'p.odm[x,," " , s  ,]p,~x, 
i ~ l  "r 

= ~.p.od~§ . , x ~ . , ; p . , , "  ",p . . . . .  p. .] .  
r 

In particular this implies a more general result than (4): 

COROLLARY 4. I f R  is any ring satisfying the identity d,, . ,[x ; y] = 0 (e.g. R is 

a semi-prime ring with pid(R ) = n ), and p [x~,. �9 x, , ;y, ,  �9 �9 y, ] is any alternat- 

ing polynomial in n 2 indeterminates x ~ , . . . , x ,  then R satisfies the identity" 

n 2 ~ l  

(5) ~, ( - 1 ) ' - ' p lx , . . .  -,s �9 �9 .,x,-'. ,; y , , - -  -, y, lx, = 0. 
i - I  

Indeed, R satisfies the identity dn~.,[x;y] = 0 by Theorem l b, and thus (5) 

follows by the relation proved above for m = n2. 

Finally (5) is the required relation (4) of our theorem. 

REMARK. Note that (4) yields the linear dependence  of n 2 + l  generic 

matrices in the ring generated by these matrices. 

The proof of Theorem 3 actually proves the more general case: 

COROLLARY 5. l f R i s a K - a l g e b r a w h i c h s a t i s f i e s d , 2 . , [ x ; y ] = O a n d R h a s a  

regular central identity q [u] which does not vanish on all matrix rings M, ( / ( ) ,  

homomorphic  image of  K, and if either pid(R) = n or q[u] attains non nil 

elements, then R has an alternating central identity ~ [x~,- �9 x,,; y~, �9 �9 y,, ] with 

the same property and (4) holds in R. 

In the proof of Theorem 3, the existence of a regular central identity q[u] 

was known for prime rings and hence for semi-prime rings with pid(R) = n. In 

the present case, we again choose 8 [ x ; y ]  = q[dn~[x;y]y,~,y~2.,,.. ",ym] and it 

remains only to show that 8 [ x ; y ]  ~ 0 in R. Indeed, since dn2.,[x;y] --0 holds 

also in every  R/P,  P a prime ideal in R, it follows that pid(R/P)<_ n. If 

pid (R/P)  = n for some P then we can reproduce the proof of Theorem 3. 

Otherwise, q[a] E A P = Lower  radical, and so q[a] is nil, which is impossible 

in our case. 
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3. Appl icat ion I 

We apply (4) to obtain a refinement of a result of Formanek [5]; but first we 

introduce the following: 

Let R be a ring with a center C and assume that R has an alternating central 

identity 6 [ x ; y ] = 6 [ x ~ , . . . , x ~ ; y , , . . . , y , ] .  Denote by A the additive group 

generated by all values {6[a;b]},  as, bj E R;  then A is an ideal in C and by 

definition A ~ 0. Indeed for every  c @ C, 6 [ a ~ , - . . , a n ; b ~ , . .  "]c = 6[a~c, a 2 . . . ]  

since 6 [x ; y] is linear and homogeneous in x~, and by definition A is an additive 

subgroup of C. 

THEOREM 6. I f  R satisfies d , , . , [ x ; y ]=O and 6 [ x ~ , . . . , x , , ; y ~ , . . . ]  is an 

alternating central identity for R, (e.g. if R is semi-prime and pid(R) = n then 

such identities exist for m = n 2), then 

1) for every ideal A o[ R. AA C_ (A n C ) R  C_A ; 

2) the ring of  quotients Re is a free Ca-module o[ rank m [or every 6 E A [or 

which R ~ O  (i.e. 6 h R ~ O  for all h ->0); 

3) If, for some 6 E A, 6 is a nonzero divisor in C then there exists a subalgebra 

A =ET'~Ca~ which is free o[ rank m over C and [or which 62R C A  C_R; 

moreover, R can be embedded in a free C-module o[ rank m. 

Indeed, consider the coefficients of (4) and note that if a C A ,  then 

6[r , , . . . , r ,  , , a , r , . , , . . . , r m ; s , , . . . ] E A n C .  Consequently,  for a E A  and 

r,, si ~ R, it follows by (4) that 

(6) 6 [ r , , . . . , r , , ; s , , . . . ] a  = ~.+-6[r, , . . . ,r i_, ,a,r~+,, . . .]r~ ~ ( A  N C ) R ,  
i 

from which (!) follows immediately. 

To prove (2), let 6 = 6 [ r , , . . . , r , 2 ; s , , . . . ] E  A; then it follows by (4) that, for 

every  r E R. 6r = E?_,c,r,, where c, = 6[r,, .  �9 r,_,,r,. �9 �9 ] E C. Hence the ring of 

quotients R, is generated over  C~ by r . , , . . . , r , , .  These elements are also 

C,- independent:  for  let Yqr, = 0  in R~, i.e. E6~csrj = 0  for some power 6 ~. 

Hence,  

O = 6 [ r , , . . . , r ,  ,,~..6kqrj, r , . , , . . . , r , , ; s , , . . . , s , ]  

= ~..6kq6[r,, .. ., r~_,, rj; r~. , , . . . ,  rm ; s , , "  ", s,] = 6k§ 
s 

since, for all j ~  i, 6[r~,. �9 r,_~, rj,. �9 �9 ] = 0 as two of its entries are equal, and for 

i = j, 6 [ r , , . . . ,  r,_,, r,,.. �9 ] = 6. The last relation means that for  all i, c, = 0 in R~. 

Q.E.D. 
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Part (3) follows now easily, for let B = 8[r~,. �9 rn'; s,," �9 �9 ] ~ 0 and choose 

al = 8r, It follows by (4) that 8r = E?=,c,r~, c, ~ C and hence aia~ = 8(Srirj) = 

8Y.C~jkrk = Y.C~jkak, i.e. A = Y.Ca~ is a subalgebra of R.Furthermore,  the previous 

relation shows that 82R C_ BECr~ = XCa, = A. Finally, the {a~} and the {r~} are 

C-independent,  for if Ec,r, = 0 then, as in the previous proof, it follows that 

8kc, =0,  and thus c, =0 .  Clearly R is embeddable in the free C-module 

ZC(r, /B)  in Re. 

This extends a result which was proved for prime rings by Formanek ([5]). 

4. Application II: M. Artin theorem 

We apply the previous results combined with an idea of Rowen [8] to obtain a 

straightforward proof of the famous theorem of M. Artin ([3]), which we prove 

in a more general but in a slightly different form: 

THEOREM 7. Let R be an algebra with a unit ; then R is an Azumaya  algebra 

of  rank n 2 if and only if R satisfies the identity d, , . ,[x ;y]  = 0 and 

(A) R has an alternating central identity B [ x , .  �9 x,2; y ~,. �9 y,, ] which does 

not vanish in every quotient R / M ,  M a maximal  ideal in R. 

A condition equivalent to (A) is: 

(A') R has a regular central identity of  the type of  Corollary 5 and for every 

maximal ideal R / M  is central simple of  dimension n 2 over its center (or 

equivalently d,2[x ; y ] ~ 0 in R /  M).  

PROOF First we assume (A) and we prove that for every prime ideal ~ in 

the center C of R there exists a prime ideal P in R such that P r C C ~3 and 
P_D~ (hence P N C = ~ ) .  

Indeed, let P be an ideal in R maximal with respect to the property 

P A C C ~ .  Then P is a prime ideal, for if A B C _ P  with A ,B  two ideals 

containing P, then (A n C) (B  tO C) c_ A B  N C C_ ~ .  Since ~ is prime, say 

A r C _C ~ ,  then by the maximality of P it follows that A C P as required. The 

alternating central polynomial 6 [x ; y] does not vanish on R / P  since it does not 

vanish on some R / M  for some maximal M _~ P, so let 80 = 8 [a~ , . . . ,  bin] ~ P. 

Assume that P N C ~  ~ and let a ~ ~ ,  a ~  P ;  then since P is a prime ideal, 

aSo~-P and, therefore, (aSoR + P ) n  C ~  ~ by the maximality of P. Conse- 

quently,/3 = aBor + p for some central/3 ~ ~ and p E P. In the quotient ring 

R / P = R  we have /3=ao~0r and rECen t ( /~ ) ;  thus g o r = 8 [ a , , . . . , b m ] r =  

8 [a, r ,--  -,/~, ] = L ,  where 8, = 8 [a , r , . .  -, bm] E C, and hence /~ = oTg~. It fol- 

lows, therefore, that/3 - aS, E P and, as/3, a~z ~ C,/3 - a~, E P Iq C C g]; but 

a E ~ and so /3 E ~ ,  which is a contradiction. Hence ~ C P tq C C P. 
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Now let ~ be a maximal ideal in C;  then by our previous result there exists a 

maximal ideal M in R such that M _ D ~ .  By assumption 8 [ x ; y ]  does not 

vanish on R I M  so we get ~ = 8 [ a ; b ] ~ O  m o d M  and hence 8 ~ - ~ .  It 

follows now by (2) of  Theorem 6 that R~ is a free Cs-module of  rank nZ; this 

proves by Bourbaki [2](II, theor. 2, p. 141) that R is C-project ive of rank n ~. 

Finally, by (1) of Theorem 6, ~M _C (M N C)R C_ ~.IRR. Since ~ is maximal and 

8 ~  we have a~ - 1 mod ~ for a E C and therefore,  M C_ a~M +~O~R C_ 

~)~R C_ M. Consequently,  M = ~ R  and thus R / ~ R  = R / M  is by assumption a 

central simple algebra of dim n ~ over  its center.  Thus, by Bourbaki [2] (def. 14 

of II, w p. 180), R is an Azumaya algebra of rank n ' .  Note,  that a simple 

consequence  of this result is A = C, since A c: ~ for every  maximal ideal ~T~. 

The converse:  if R is an Azumaya algebra of rank n 2 then R satisfies all 

identities of M, (Z) ;  in particular it will satisfy d,2.t[x; y] = 0 and, by Theorem 

3, it has an alternating central identity which does not vanish in every  M,( /~)  

and hence also in every R/M. 

Finally, (A') is equivalent to (A): for  if R satisfies (A') then by Corollary 5, R 

has an alternating central identity 8 [x ; y] which does not vanish for all M, (/~). 

Now, each R / M  is a prime algebra over  some K = K + M / M  and R / M  is by 

assumption central simple of dimension n z over  its center;  hence it follows by 

the proof  of Theorem 3 that 8 [ x ; y ]  will not vanish on R/M. Conversely if (A) 

holds, then since R / M  satisfies d,~.~[x ; y] = 0 it follows that pid(R/M) <- n. On 

the other  hand, the fact that ~[x, , .  �9 .,x,2; y, ,-  �9 �9 ] ~ 0 on R / M  and that ~$[x ; y] 

vanishes if the n z x~ are linearly dependent  over  the center  of R / M  proves that 

pid(R/M) = n, i.e. R / M  is central simple of  dimension n 2 over  its center.  

Fur thermore,  the existence of such an identity follows from the fact that R 

satisfies all identities of M, (Z). Note that in the proof one needs only that the 

regular identity of R will not necessarily hold for all M,( /~)  as in Corollary 5, 

but for  those  I( = K / K  N M ~- K + M/M,  M maximal ideals of R. 

An immediate consequence of the fact that A = C for an algebra satisfying 

Theorem 7 is that: 

COROLLARY 7. I[ R satisfies Theorem 7 (i.e. an Azumaya algebra of  rank n ~) 

then A = (A O C)R  for every ideal A in R. Generally, for arbitrary rings R 

which satisfy Theorem 6, if A N C + A = C then (A O C) R = A. 

Indeed, by (1) of  Theorem 6 it follows that A = CA = C AA + ( A n  C)A c_ 

(A n C)R C A. For Azumaya algebras A = C, and so this condition holds for  all 

ideals A. 
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5. Application III: noetherian Pl-rings 

We again apply the previous result, in particular (4), to prove that under 

certain restrictions the ACC condition on two-sided ideals imply that the ring is 

right and left noetherian. 

We consider ring R of the type described in Theorem 6, that is a ring R 

which satisfies d ~ , , [ x ; y ] = 0  and has an alternative central identity 

8 [x,,- -., x,, ; y , , .  �9 -, y, ] = 8 [x ; y ], and let A be the ideal in C generated by the 
values {8[a ;b]}. Then: 

THEOREM 8. I[ R is a ring with this property and satisfies the ascending chain 

condition (ACC)  on two sided ideals, the R/(0: A) is right and left noetherian, 

where 
(0:A) = {r E R, R A r  = 0}. 

In particular if R is a prime PI-ring, it satisfies the requirement of this 

theorem, and furthermore A( ~ 0) contains regular elements and so (0: A)= 0. 
Hence, 

COROLLARY 9. (Cauchon [9]). A prime PI-ring with the ACC condition on 

two sided ideals is noetherian. 

This was the basic result of Cauchon from which it follows that the corollary 

holds also for semi-prime rings. 

PROOF. Since R satisfies the ACC on two-sided ideals, it follows that 

RA is finitely generated, i.e. RA = ERS,, where 8, = 8 [ a , , , . . . , a , , , , b , j , . . . ] .  

Let  RL be a left ideal in R, and the theorem will follow by showing that L is a 
finitely generated ideal mod(0: A): 

For every x E L, it follows by (4) that ~,x = Y.j~=lcq(x)aq wherecq(x )E  C. 

Consider the set of all vectors c ( x ) =  (co(x)) as elements of the direct sum 

�9 R = R ' '~ of copies of R. Since R is noetherian as an R-R module, so is 

also R"m); hence, the module N~. =Y~xELRc(x), which is a two-sided R 

submodule of R""),  is finitely generated. Consequently, there are u, , .  �9 uk E L 

such that NL = E~., Rc(u,).  

Thus for every x E L:  c ( x ) =  Y.a~c(u~), as E R which means that c,j(x)= 

E~a,c,j(u,). It follows, therefore, by the definition of (c,j(x)), that: 

= = : Ea,Ec,,(u )a0 -- E S ,  
J i p p J p 

Hence, 8 , (x -E~a~u , )=O which yields R A ( x - E a ,  u~)=0. This proves that 

L - E~Rup mod (0: A). Q.E.D. 
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We note that the same proof with a slight modification yields: 

THEOrEm 10. Let R satisfy d~ .~[x;y]=O and have an alternative central 

identity 8[x ;y ] .  I f  its center C is noetherian then R/(0:A) is a noetherian 

C-module; and hence R is also right and left noetherian. 

Indeed replace RA by A, which is a C-ideal, and R "'~ by C "m~ = 0 C ,  and the 

same arguments will yield the elements ap E C, and the rest is similar. 

We conclude with two remarks on the ideal (0: A) and on the existence of 

nonprime rings with an identity 8 I x ; y ]  for which (0: A)= 0. 

THEOREM 11. Let R be a semi-prime ring with pidR = n, and Nn = 

(') {P; prime and pid(R/P)  = n}. Then [or every alternating central identity 

8 I x ; y ]  o[ Corollary 5 (which exists!) we have (0 :A)= Nn. 

Indeed, first note that 8 [ x ; y ]  = 8 [ x ~ , - . . , x , 2 ; y , . . .  ] = 0 in every quotient 

R / P  for which pid R / P  < n, since 8 I x ; y ]  = 0 vanishes if the x, and dependent 

over the center of R/P ,  which is always the case if p i d R / P  < n. Hence, 

AN~ _C P for every prime ideal in R since either A _C P or N, _C P, and so 

ANn = fq P = 0 in the semi-prime ring R. Thus N, C_ (0: A). 

To prove the converse, let a ~ N n ;  then a Z P  for some prime P with 

p i d R / P  = n. But 8 [ x ; y ] ~ 0  mod P by the proof of Corollary 5, and so 

8 [ u ; v ] a ~ O  m o d P  for some u , , v i ~ R .  Thus a ~ ( 0 : A )  and, therefore, 
(0: A) C Nn. Q.E.D. 

REmarg. It is worth pointing out that, with the exception of Application II, 

(Section 4) R is not assumed to contain a unit. 

The last theorem enables us to introduce an induction process in handling 

semi-prime rings: 

LEMMA 12. Let  R be a semi-prime ring with pid R = n with center C, then 

the subring R ' =  C + Nn is a semi-prime ring with the same center and 

pid R '  < n. 

It is easily verified that R '  is semi-prime. Let N" = N P where P ranges over 

all primes for which pid R / P  < n ; then N" fq N~ = 0 in the semi-prime ring R. 

Hence, N~ ~ ( N ,  + N ' ) / N ' C _ R / N "  and so N, will also satisfy dm§ = 0  

with m < n 2. Now R '  is a central extension of N~ and therefore will also satisfy 

the same identity, which yields pid R ' <  n. 

Also, if u ~ N .  r lCent(R ' ) ,  then for every r E R ,  a E N ~ ,  0 =  

u ( a r ) - ( a r ) u  = a ( u r - r u ) ,  and so u r - r u  ~ N ~  f3(0:Nn) =0 .  Thus, 

u E Cent R = C. 
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This induction process clearly yields Formanek's result: 

COROLLARY 13. (Formanek [5]). A semi-prime PI-ring R with a noetherian 

center C is C-noetherian and hence noetherian. 

The ring R/N~ is C-noetherian by Theorems 10 and 11. The C-module  Nn is 

a submodule of R ', on which by the previous lemma we can use an induction on 

the pid of the ring. So N.  is also a noetherian C-module,  and the proof fol lows 

now from the exact sequence 0 ~ Nn ~ R -~ R / N ,  ~ O. 
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